Planning by Dynamic Programming1. Introduction�What is Dynamic Programming?The term dynamic programming refers to a collection of algorithms that can be used to compute optimal policies given a perfect model of the environment as a Markov decision processTwo properties of Dynamic ProgrammingOptimal subproblemPrinciple of optimality appliesOptimal solution can be decomposed into subproblemsOverla..
이 내용은 Sung Kim 교수님의 모두를 위한 RL 강좌를 정리한 내용입니다. https://youtu.be/S1Y9eys2bdg ----------------------------------------------------------------------------------------------------------------------이전 Lecture 6 에서 Q-Network의 문제점으로 1. Correlations between samples2. Non-stationary targets 두 가지를 말하며 Q-Network는 Optimal Q에 수렴하지 않는다고 했습니다. 그러나 구글 DeepMind 팀에서 이 문제를 해결하였고, 해결한 알고리즘의 이름이 바로 Deep Q-Network 입니다..
- Total
- Today
- Yesterday
- MySQL
- p-value
- OS
- #AWS
- MDP
- Memory segmetation
- sequelize
- AWS
- 강화학습
- #ausg
- 통계적 가설 검정
- Gradient descent algorithm
- Linux
- #handsonlab
- Reinforcement Learniing
- gitgnore
- rl
- Android Studio
- branch
- commands
- git
- #ab
- Preprocessing
- Reinforcement Learning
- System
- Confustion Matrix
- ausg
- Markov Decision Process
- Algorithm
- Android
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |