티스토리 뷰
Efficienct analysis
=> Algorithm analysis
Correctness analysis
=> Using a mathmatical proof ( 실제로 타당한가 여부 조사)
※Incorrect : loop, wrong answer.
Big O
=> g(n) ≤ c x f(n)
=> c : some positive real constant
=> n : some non-negative integer
=> g(n) ∈ O(f(n))
ex) 3lgn, 4n^2, 5n+7 ∈ O(n^2)
Omega Ω
=> g(n) ≥ c x f(n)
=> c : some positive real constant
=> n : some non-negative integer
=> g(n) ∈ Ω(f(n))
ex) 4n^2, 4n^3, 2^n, n!, n^n ∈ Ω(n^2)
Theta Θ
=> c x f(n) ≤ g(n) ≤ d x f(n)
=> c, d : some positive real constant
=> n : some non-negative integer
=> g(n) ∈ Θ(f(n))
ex) 4n^2, 4n^2 + 7, n^2 ∈ Θ(n^2)
Small o
=> g(n) ≤ c x f(n)
=> c : Every positive real constant
=> n : some non-negative integer
=> g(n) ∈ o(f(n))
ex) n, logn, nlogn ∈ o(n^2)
Properties of Order Functions
- g(n) ∈ O(f(n)) iff f(n) ∈ Ω(g(n)
- g(n) ∈ Θ(f(n)) iif f(n) ∈ Θ(g(n))
- If b>1 and a>1, then logaN ∈Θ(logbN)
- If b>a>0, then a^n ∈ o(b^n)
- For all a>0, a^n ∈ o(n!)
- If c ≥ 0, d ≥ 0, g(n) ∈ O(f(n)), and h(n) ∈ Θ(f(n)), then {c x g(n) + d x h(n)} ∈ Θ(f(n)
'Computer Science > Algorithm' 카테고리의 다른 글
Backtracking (0) | 2018.04.06 |
---|---|
Greedy Approach (0) | 2018.04.06 |
Dynamic Programming (0) | 2018.04.06 |
Divide and Conquer (0) | 2018.04.06 |
Algorithm (0) | 2018.04.06 |
- Total
- Today
- Yesterday
- p-value
- #handsonlab
- Memory segmetation
- Linux
- AWS
- MySQL
- Android
- Preprocessing
- Confustion Matrix
- #AWS
- System
- 강화학습
- Markov Decision Process
- ausg
- MDP
- 통계적 가설 검정
- Gradient descent algorithm
- rl
- Reinforcement Learniing
- Reinforcement Learning
- branch
- commands
- Android Studio
- #ab
- sequelize
- gitgnore
- git
- #ausg
- Algorithm
- OS
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |